

D2.2: Block.IS Enablers
09/2019

INNOSUP-2018-1

2

D2.2 Block.IS Enablers

Author(s)/Organisation(s) R. Bröchler (INTRASOFT)

Contributor(s) INTRASOFT and TNO

Work Package WP2

Delivery Date (DoA) 30/09/2019

Actual Delivery Date 30/09/2019

Abstract: Deliverable D2.2 describes the enablers, i.e. and links to the
software implementation, which are provided by the Block.IS
partners (INTRASOFT and TNO) to the SMEs and start-ups
participating in the project open calls. The SMEs and start-ups that
will participate in Block.IS open calls form the primary external
target audience of the deliverable who will be able to understand
the enablers being offered and consider using them when designing
their proposals. In parallel to the technical documentation, links are
provided to repositories including the software implementation.
These repositories are accessible to interested parties and managed
by the project partners. The technical documentation includes
descriptions of the basic concepts, the architecture, and the
interactions foreseen for each enabler. Six (6) enablers are being
provided, four by INTRASOFT International and two by TNO. The
deliverable is the output of Task 2.2.

Document Revision History

Date Version Author/Contributor/ Reviewer Summary of main changes

20/06/2019 0.1 R. Bröchler TOC and proposal for
assignments

04/07/2019 0.2 R. Bröchler, C. Ipektsidis, C.
Brewster

Enabler selection and discussion
on enabler documentation

09/09/2019 0.3 R. Bröchler, C. Ipektsidis, C.
Brewster, J. Spek

Contribution on the enabler
documentation

16/09/2019 0.4 R. Bröchler Version submitted for internal
review

23/09/2019 0.5 O. V. Deventer Review comments

27/09/2019 0.6 R. Bröchler Version submitted to the
coordinator

30/09/2019 1.0 A. Damasceno Submission of final version

Dissemination Level

PU Public X

PP
Restricted to other programme participants (including the EC

Services)

RE
Restricted to a group specified by the consortium (including the EC

Services)

CO Confidential, only for members of the consortium (including the EC)

INNOSUP-2018-1

3

D2.2 Block.IS Enablers

Block.IS Consortium

Participant
Number

Participant organisation name
Short
name

Country

1 F6S NETWORK LIMITED F6S UK

2 INOSENS DOO NOVI SAD INO RS

3 INTRASOFT INTERNATIONAL SA INTRA LU

4 INTERNATIONAL DEVELOPMENT IRELAND LIMITED IDI IE

5 POSLOVNO UDRUZENJE VOJVODJANSKI IKT KLASTER VOICT RS

6
FEDERACION EMPRESARIAL DE AGROALIMENTACION
DE LA COMUNIDAD VALENCIANA

FEDACOVA ES

7 R-TECH GMBH IT-Log DE

8 EUROPEAN DIGITAL SME ALLIANCE DSME BE

9 FINTECHSTAGE LTD FTS UK

10 UAB CIVITTA CIVITTA LT

11
NEDERLANDSE ORGANISATIE VOOR TOEGEPAST
NATUURWETENSCHAPPELIJK ONDERZOEK TNO

TNO NL

12
SYNELIXIS LYSEIS PLIROFORIKIS AUTOMATISMOU &
TILEPIKOINONION ANONIMI ETAIRIA

SYN EL

LEGAL NOTICE

The information and views set out in this application form are those of the author(s) and do not

necessarily reflect the official opinion of the European Union. Neither the European Union

institutions and bodies nor any person acting on their behalf may be held responsible for the use

which may be made of the information contained therein.

Funding Scheme: Innovation Action (IA) ● Theme: H2020-INNOSUP-2018-01-two-stage
Start date of project: 01 May, 2019 ● Duration: 32 months

© Block.IS Consortium, 2019
Reproduction is authorised provided the source is acknowledged.

INNOSUP-2018-1

4

D2.2 Block.IS Enablers

Table of contents

1 Introduction and Scope ... 7

1.1 Objectives.. 7

1.2 Scope and Relation with other WPs.. 7

1.3 Selection of Enablers ... 8

1.4 Document Structure.. 9

2 ID management with AAA support based on uPort Enabler .. 10

2.1 Basic Concepts .. 10

2.2 Architecture and Interactions ... 10

2.2.1 High Level Architecture ... 10

2.2.2 Interactions ... 12

2.3 Installation and Administration .. 14

2.4 Open API ... 14

3 Storage Enabler ... 15

3.1 Basic Concepts .. 15

3.2 Architecture and Interactions ... 15

3.2.1 High level Architecture .. 15

3.2.2 Interactions ... 17

3.3 Installation and Administration .. 18

3.4 Open API ... 18

4 Service Registry Enabler .. 19

4.1 Basic Concepts .. 19

4.2 Architecture and Interactions ... 19

4.2.1 High Level Architecture ... 19

4.2.2 Interactions ... 20

4.3 Installation and Administration .. 23

4.4 Open API ... 23

5 Trusted Negotiations Enabler ... 24

5.1 Basic Concepts .. 24

5.2 Architecture and Interactions ... 24

5.2.1 High Level Architecture ... 24

5.2.2 Interactions ... 25

5.3 Installation and Administration .. 26

5.4 Open API ... 27

6 Identity and business process management based on SSIF Enabler .. 28

INNOSUP-2018-1

5

D2.2 Block.IS Enablers

6.1 Basic Concepts .. 28

6.2 Architecture and Interactions ... 28

6.2.1 High Level Architecture ... 28

6.2.2 Interactions ... 29

6.3 Installation and Administration .. 30

6.4 Open API ... 30

7 Semantic Ledger Enabler .. 32

7.1 Basic Concepts .. 32

7.2 Architecture and Interactions ... 32

7.2.1 High level Architecture .. 32

7.2.2 Interactions ... 32

7.3 Installation and Administration .. 35

7.4 Open API ... 35

8 Discussion and Future Steps ... 36

References .. 37

List of figures

Figure 1: Identity Management with AAA support based on uPort Enabler high level architecture (non

interactive scenario, client interacting with an external service). .. 11

Figure 2: Identity Management with AAA support based on uPort Enabler high level architecture (interactive

scenario, client interacting with a DAPP). .. 11

Figure 3: Sequence diagram for non-interactive authentication ... 12

Figure 4: Sequence diagram for interactive usage of AAA (authentication) .. 13

Figure 5: Storage enabler high level architecture ... 16

Figure 6: Storage enabler Application view (settings) .. 16

Figure 7: Storage enabler interactions ... 18

Figure 8: Service registry enabler high level architecture .. 20

Figure 9: Sequence diagram depicting usage of Service Registry enabler (registration) 21

Figure 10: Sequence diagram depicting usage of Service Registry enabler (deletion) ... 22

Figure 11: Sequence diagram depicting usage of Service Registry enabler (inquiry) ... 23

Figure 12: Trusted Negotiations enabler high level architecture ... 25

Figure 13: Sequence diagram depicting the usage of Trusted Negotiation enabler .. 26

Figure 14: SSI - verifiable credentials and distributed identifiers ... 29

Figure 15: SSI high-level architecture ... 29

Figure 16: Sequence diagram for transaction request ... 30

Figure 17: Interactions from the semantic ledger enabler ... 33

Figure 18: Sequence diagram for semantic ledger (validation) .. 34

Figure 19: Sequence diagram for the semantic ledger enabler (provision of rules) .. 35

INNOSUP-2018-1

6

D2.2 Block.IS Enablers

List of Abbreviations and Acronyms

AAA Authentication, Authorization, Accounting

API Application Programming Interface

DAPP Decentralised Application

DDO DID Document

DID Distributed Identifier

ECDSA Elliptic Curve Digital Signature Algorithm

ETH Ethereum

GDPR General Data Protection Regulation

HMAC Hashed-based Message Authentication Code

IPFS Interplanetary File System

OSS Open Source Software

REST Representational State Transfer

SC Smart Contract

SHA3 Secure Hash Algorithm 3

SHACL Shapes Constraint Language

SOTA State Of The Art

SSIF Self – Sovereign Identity Framework

UDDI Universal Description, Discovery and Integration

INNOSUP-2018-1

7

D2.2 Block.IS Enablers

1 Introduction and Scope

Deliverable D2.2 entitled “Block.IS Enablers” is the output of Task 2.2 (Block.IS Blockchain Enablers

and supporting materials) and includes the software of the Block.IS enablers along with the

supporting technical materials. The Block.IS enablers are provided by two of the project partners

that participate in the Task T2.2, namely INTRASOFT International and TNO. INTRASOFT has been the

editor of the deliverable, documenting the enablers that it offers, while TNO has also contributed to

the deliverable documenting the enablers it offers.

The context and the procedures related to the technical support of the usage of the Block.IS

enablers are described in deliverable D2.1 “Block.IS Technical and Business support service design”

which is being submitted at the same time also as output of the Task 2.2 [1].

1.1 Objectives

The main objectives of this deliverable include the following:

1. To present the selected Enablers that will be offered to the applicants of the Block.IS open

calls and briefly discuss the justification for their selection

2. To provide the textual documentation of the offered Enablers including the basic concepts,

the high-level architecture and the interaction (sequence) diagrams describing the usage of

the enablers

3. To provide the links to the (gitlab) repository including a) the open API through which the

enablers can be used for the development of applications and b) the software

implementation.

Given that the current deliverable is prepared in the first phase of the project, i.e. at M5, we expect

to have significant interaction with the potential applicants in the open calls in the context of using

the enablers. In this view, we expect that the resources and documentation related to the enablers

will be evolving / enhanced during the lifetime of the project. This will be associated with the

continuous evolution of the technical support material but will be also reflected on the

enhancement of the online sources related to the enablers (the gitlab groups/projects that are

described below).

1.2 Scope and Relation with other WPs

D2.2 is a key deliverable in the Block.IS ecosystem as it describes the enablers that are offered in the

open calls of the project. The work on the provision and support of the Enablers is taking place

mainly in the context of WP2, so the dependencies on other Tasks / WPs are, at this phase, mainly

related to the timing of the open calls.

D2.2 is strongly related with the deliverable D2.1 “Block.IS technical and business support service

design” and especially with reference to the technical support aspects (which also refer to D2.2).

While the project advances, with the procedures related to the open calls, the experiences and the

lessons learnt will be gathered and consolidated by WP2 partners. D2.3 “Block.IS technical and

business support design - v2”, as the output of Tasks 2.1, 2.2 and 2.3 will include the updates and

INNOSUP-2018-1

8

D2.2 Block.IS Enablers

enhancements related to the Blockchain enablers based on the feedback collected through the 1st

acceleration program. D2.3 is due for submission at month M18.

1.3 Selection of Enablers

The Block.IS Blockchain enablers have been at the core of the project since its design. They are

considered to offer frequently used and meaningful functionality, generic enough in order to be

applicable at an extensive set of applications. The enablers leverage the Blockchain functionality

and facilitate access to their added value for the application designers.

The content of the enablers has already been indicatively described during the design of the project

(as discussed in the DoA). This description has been updated in the first phase of the project through

dedicated discussions and teleconferences in the context of WP2, considering the state of the art in

the frameworks to be used as well as the added value of the software modules. The functional areas

of ID management, business process management, AAA (Authentication, Authorization, and

Accounting), media storage, trusted negotiations, and semantic ledgering have been considered as

crucial for application designers, forming functional blocks that are repeatedly met in SOTA

applications.

The Block.IS enablers in principle enhance and enrich functionality and operations with the security-

related (non-functional) characteristics of the Blockchain infrastructures. These characteristics can

include (depending on the characteristics and context of the enabler):

1. Integrity of data stored and exchanged

2. Authenticity of data stored and exchanged

3. Tracing and tracking through timestamping

4. Non-repudiation of activities performed.

Our work has resulted in the provision of 6 Blockchain enablers (enhancing the initially indicated, in

DoA, number of 5 enablers).

The selected enablers offered by the Block.IS consortium are the following:

1. ID management with AAA support based on uPort enabler

2. Storage enabler

3. Service registry enabler

4. Trusted negotiations enabler

5. ID and business process management based on SSIF enabler

6. Semantic ledger enabler

The enablers are self-contained modules (with their functionality fully defined through their APIs)

and the interested SMEs can use one or more of them, depending on the needs of their applications.

Our estimation is that the enablers, due to their generic nature, are equally applicable in the three

domains pursued by the project (agrifood, logistics and finance).

The full technical material is consolidated during the provision of the technological support services

and content (in the context of Block.IS WP2). Furthermore and as already mentioned, the

responsible partners will be closely interacting with the potential applicants, leveraging the received

feedback in order to continuously improve their offerings.

Given the technological nature of the deliverable, the reader is assumed to have some basic

knowledge on a) the concept of modular application design and development, b) the technologies

INNOSUP-2018-1

9

D2.2 Block.IS Enablers

and tools employed (such the sequence diagrams) for the description of the enablers and c) the key

technologies employed (including Blockchains). Sources informing about specific frameworks and

tools used (such as uPort and SSIF) are provided for the interested reader and are further extended

in the technical support services (website and forum).

1.4 Document Structure

To support readability and coherence each Section follows a uniform structure, consisting of the

following sub-sections:

• Basic concepts

• High level architecture and expected interactions including sequence diagrams

• Links to the instructions related to installation and deployment and to the Open API

The Sections of the document are the following Section 2 describes the ID management with AAA

support based on uPort enabler, Section 3 describes the Storage enabler, Section 4 describes the

Service registry enabler, Section 5 describes the Trusted negotiations enabler, Section 6 describes

the ID and business process management based on SSIF enabler and Section 7 describes the

Semantic ledger enabler. The document is concluded with Section 8 that reviews the work and

discusses the expected next steps.

The deliverable is closely connected with the technical material included in the gitlab projects /

repositories and also with the technical support services provided to the potential applicants.

INNOSUP-2018-1

10

D2.2 Block.IS Enablers

2 ID management with AAA support based on uPort

Enabler

2.1 Basic Concepts

The focal area of the Identity Management with AAA (Authentication, Authorization and Accounting)

support based on uPort enabler is the provisioning of services related to the administration of the

user identity, supporting authentication and authorization. The enabler implements AAA and trust-

management based on the uPort framework [2].

The uPort framework provides an Open Identity System for the Decentralized Web. This system

allows users to register their identity on Ethereum, send and request credentials, sign transactions,

and securely manage keys & data.

The Identity Management with AAA support based on uPort enabler protects interactions with Smart

Contracts (DAPPs) under a multi-layered perspective in order to support:

1. Check signer existence

2. Check signer access groups

3. Check signer ability to interact with a Smart Contract

Based on the above, the enabler allows for a) user authentication and authorization, b) message

integrity verification (validating the signatures of messages) and c) storage of data into the

blockchain which can support accounting. The uPort allows for interaction with Decentralized

Application (DAPPs) without the need for cryptocurrency at client side. This is expected to facilitate

adoption on behalf of the application providers.

The enabler is accompanied by two cross-platform client libraries, implemented a) in Python and b)

in Java. Both clients are provided with the enabler.

2.2 Architecture and Interactions

In this Section we describe the high-level architecture and the main interactions (using sequence

diagrams).

2.2.1 High Level Architecture

To guarantee on-chain AAA processing, data integrity and lock-in free operation, at least at the level

of identity provisioning, the enabler bases its operation on the relevant set uPort Identity SCs (Smart

Contracts). The enabler is based on the automated execution of specific Smart Contacts in the

Blockchain and it acts as a security gateway between the user and the protected DAPPs

(Decentralized Applications) or with the Blockchain infrastructure (based on Ethereum).

The architectural concepts of MetaIdentityManager SC, the Proxy SC and the (Tx) Relay SC are

employed as depicted in Figure 1 and Figure 2 (which are in principle aligned with the uPort

reference architecture [2]).

INNOSUP-2018-1

11

D2.2 Block.IS Enablers

The Relay checks the integrity of the received message and forwards it to the MetaIdentity Manager.

This way the user (user equipment) is not necessary to host mining software and pay for transaction

fees. The MetaIdentity Manager checks the validity of the identity of the sender.

The Blockchain infrastructure is based upon the Ethereum open source, public, blockchain-based

distributed computing platform featuring smart contract (scripting) functionality [3]. The

deployment of the Ethereum infrastructure are based upon the standard procedures (described by

the 3rd party tools), while further details on the usage by the enabler are included in the enabler

deployment instructions (in the respective gitlab repository).

Figure 1: Identity Management with AAA support based on uPort Enabler high level architecture (non interactive scenario,
client interacting with an external service).

Figure 2: Identity Management with AAA support based on uPort Enabler high level architecture (interactive scenario, client

interacting with a DAPP).

In principle we foresee two cases: a) the non-interactive where the client interacts with an external

service which uses the enabler for authentication and b) the interactive where the client interacts

with a Smart Contract (Target DAPP), through the enabler. In the case of (b) the Target DAPP is also

depicted as well as the Proxy Smart Contract which forwards the message to the target DAPP.

We foresee two operation modes: 1) BC-based AAA services, interacting with the ETH BC for

explicitly authenticating and authorizing every request towards the set of protected modules and 2)

Cached AAA services, necessitating the invocation of BC-based AAA services at least once and after

that periodically invoking the BC-based services to update the AAA-cache. The 2nd mode of operation

is oriented towards real time requirements. Specifically, due to the execution rate of the Smart

Contracts residing in the BC, the SCs are automatically executed whenever a new block is generated.

The inherent nature of the ETH BC (by design) introduces a certain delay (indicatively 10-20 seconds)

between the generation of subsequent blocks. The AAA results are provided by the BC in the form of

INNOSUP-2018-1

12

D2.2 Block.IS Enablers

batches (after related delay). Considering that such a delay may not be acceptable by certain types

of applications we provide the cached mode of operation.

The selection of the operation mode is performed during the deployment and configuration of the

enabler.

2.2.2 Interactions

The clients of the Identity Management with AAA support based on uPort enabler are able to

interact with a) external services in a non-interactive scenario and b) with the protected DAPPs in

the interactive scenario by issuing sets of digitally signed requests that generate interactions with

the blockchain. In the following we discuss the interactions, through sequence diagrams, for both

scenarios.

Non - Interactive scenario

The typical interactions are depicted in Figure 3:

Figure 3: Sequence diagram for non-interactive authentication

The basic steps included in the sequence are the following:

1. The client contacts an external service (i.e. not belonging to the Blockchain infrastructure)

and needs to authenticate himself in order to use it

2. The external service invokes the Identity Management with AAA support based on uPort

enabler in order to verify the identity of the sender. The enabler should verify that the public

address of the user that signed the request (using the Hashed-Based Message

Authentication Code – HMAC) is known to the blockchain infrastructure.

3. The enabler contacts the Relay Smart Contract

4. The MetaIdentity Manager is then contacted and performs the verification.

The responses follow the reverse route as depicted in the figure. In this case of non-interactive

authentication, no transaction hash is generated as the interaction with the blockchain is passive

(only calling the Relay SC and the MetaIdentity manager).

Interactive Scenario

INNOSUP-2018-1

13

D2.2 Block.IS Enablers

In the case of interactive scenario, the client is interacting with a Smart Contract (e.g. one of the

DAPPs) and the Enabler should authenticate and authorize that request. In this case a transaction

hash characterizing the interaction of the client with the blockchain is generated.

The typical sequence consists of the following steps and it is depicted in Figure 4.

1. The client contacts the Identity Management with AAA support based on uPort Enabler

in order to interact with the target DAPP

2. The enabler gives the control of the AAA process to the Relay Smart Contract. The input

to the Relay Server that gets relayed should be a signed message containing:

a. Data to be relayed including a) the address target ETH distributed application

(DAPP) that should be activated if all AAA checks are validated, b) the target

function of the DAPP to be executed, c) the data parameters to be passed into

the target DAPP.

b. Signature attributes of the message in compliance with the Elliptic Curve Digital

Signature Algorithm (ECDSA) implementation of ETH.

c. Owner address (public key) in the ETH BC.

d. Destination address in the ETH BC (the address of the MetaIdentityManager

Smart Contract).

3. Τhe Relay SC validates that the provided signature elements are compatible with the

hashed data included in the message, and forwards the message to the

MetaIdentityManager SC.

4. In turn, the MetaIdentityManager SC checks whether the owner address is valid in the

context of this MetaIdentityManager by means of calling the relevant Proxy SC,

essentially performing authentication. Then the authorization part takes place. If the

request is both authenticated and authorized, the request gets be relayed to the

appropriate Proxy SC.

5. The Proxy SC forwards the message to the target DAPP, as initially specified by the AAA

Enabler client initiating the whole transactions forwarding chain. Depending on the

target DAPP, accounting may be achieved if relevant accounting functionalities are

included in this DAPP (depending on the pursued application scenario).

Figure 4: Sequence diagram for interactive usage of AAA (authentication)

The Relay SC, the MetaIdentityManager SC and the Proxy SC are based on the OSS uPort set of

contracts. The MetaIdentityManager SC is able to register new identities and owners, migrate Proxy

SCs to other MetaIdentityManager SCs and handle the identity recovery operations.

INNOSUP-2018-1

14

D2.2 Block.IS Enablers

At all stages, the involved SCs can emit properly defined (Ethereum-related) events so that errors

particularly related to unauthenticated or unauthorized access are caught by an event server

(configured by the application provider) and get published to relevant communication channels to

be consumed by devices.

As discussed, in the context of the Relay Server, successful authentication and authorization

requests may be cached at a local context for a limited timeframe so that authentication and

authorization for time-critical applications can also be supported. In such cases, the Relay server will

simply skip the AAA process, directly invoking other DAPPS.

2.3 Installation and Administration

The software and instructions for its installation / deployment and administration for the ID

Management with AAA support based on uPort enabler are available in the following Gitlab group:

https://gitlab.com/block.is-enablers/id-management-aaa-uport-enabler

In parallel with the documentation related to the deployment of the enabler, instructions are

provided for the accompanying Ethereum platform in order to form a pilot environment.

The group is administered by INTRASOFT International.

2.4 Open API

The technical documentation and the software of the Identity Management with AAA support based

on uPort enabler are available in the following Gitlab group:

https://gitlab.com/block.is-enablers/id-management-aaa-uport-enabler

The group is administered by INTRASOFT International.

https://gitlab.com/block.is-enablers/id-management-aaa-uport-enabler
https://gitlab.com/block.is-enablers/id-management-aaa-uport-enabler

INNOSUP-2018-1

15

D2.2 Block.IS Enablers

3 Storage Enabler

This Section describes the Storage enabler.

3.1 Basic Concepts

The Storage enabler allows the end user (i.e. the user of the proposed application) to encrypt and

store files (consisting of e.g. text, photos and videos) in a distributed file system (and specifically in

the context of the Storage enabler in the Interplanetary File System, IPFS) which collaborates with

the Blockchain infrastructure, registering the relevant activities [4]. The information exchanges,

during the file exchanges, are permanent, immutable and traceable, while the files are kept

encrypted in the file system. As the files are stored in the file system, their size is not limited (by the

typical limitations of the Blockchain infrastructure).

The Storage enabler is combined with a smart phone application (Storage App), which is used by the

end user and collects the messages containing text, images and video (collaborating with the

Android OS of the mobile phone). The Storage App digitally signs each message before transmission

in order to allow for identity checking and integrity validation. The enabler is typically configured so

that these messages are deleted on the user mobile device after being sent them to the enabler. The

storage App is also provided with the enabler.

For the usage of the Storage enabler, it is assumed that user registration has already taken place and

the user is already authenticated (using for example the Identity Management with AAA

(Authentication, Authorization and Accounting) support based on uPort enabler).

3.2 Architecture and Interactions

In this Section we describe the high-level architecture and the main interactions (using sequence

diagrams) of the Storage enabler.

3.2.1 High level Architecture

The Storage enabler allows the end user (i.e. the user of the proposed application) to encrypt and

store files (consisting of e.g. text, photos and videos) in a distributed file system. In parallel the

enabler collaborates with the Blockchain infrastructure for registering the file storage transactions

and the IPFS distributed file system for storing files (text, photographs and videos). The enabler

offers a secure Application Programming Interface (API) to facilitate interactions at application level

(as depicted in Figure 5).

The Storage App (application) is responsible for getting the file (through the mobile phone) and

providing it to the Storage enabler, which then communicates with the distributed file system (IPFS)

and the Blockchain.

INNOSUP-2018-1

16

D2.2 Block.IS Enablers

Figure 5: Storage enabler high level architecture

The Blockchain infrastructure is based upon the Ethereum open source, public, blockchain-based

distributed computing platform featuring smart contract (scripting) functionality. Its deployment is

based upon the standard procedures (described by the 3rd party tools), while further details on the

usage by the enabler are included in the enabler deployment instructions.

The App features a similar layout to popular messaging applications to facilitate adoption and usage

on behalf of the users. A view of the Android App is presented in Figure 6.

Figure 6: Storage enabler Application view (settings)

The Storage Enabler App is expected to be allowed access by the user to specific smart phone

features and specifically a) the camera, to allow the application shoot photographs and videos, b)

the microphone if the user wishes to include sound in the recording, c) the mobile phone storage for

temporarily storing the file prior to sending them and d) the location info for event localization.

INNOSUP-2018-1

17

D2.2 Block.IS Enablers

3.2.2 Interactions

The entities involved include the (human) user, the Application, the Storage Enabler, the IPFS, the ID

management enabler (depicted as AAA enabler) and the Blockchain infrastructure. The ID

management with AAA support based on uPort enabler can be used for example.

When the user installs the Storage Enabler App, the App automatically generates a key pair (public

and private one) that is used for signing the requests toward the Storage Enabler API Interface. To

protect this information from unauthorized use, upon first application opening, the user is asked to

enter a password; this password is used by the application for locking the user blockchain wallet.

Whenever a user wants to send a file (text, photograph or video) the application prompts the user

for typing their password so that their private key store gets unlocked and the content is signed

before sending.

In the typical operational scenario of a user uploading a file with the Blockchain-based mechanisms

for providing the authenticity and integrity of the file, we foresee that the following interactions take

place, as depicted in Figure 7.

1. The user creates the content to be uploaded using the smart phone application (App). The

Application interacts with the smartphone and the file becomes available (e.g. a video or

photo is taken)

2. The user indicates to the smart phone application (App) to upload the file. The application

generates metadata including the BC address of the sender, the timestamp and the location

(upon confirmation from the user).

3. The user is asked to authenticate using the AAA enabler (which uses the Blockchain

infrastructure).

4. The Application calculates the MD5 hash of the file to be uploaded and then the SHA3 256

hex string of the MD5 hash. It unlocks the Ethereum wallet (key file) of the user, asking for

his password and signs the SHA3 (Secure Hash Algorithm 3) hash with the private key of the

unlocked user wallet. It then locks the Ethereum wallet of the user and uploads the file to

the Storage enabler.

5. The Storage enabler uploads the file to the IPFS file system. The information is stored on the

distributed file system (IPFS) in encrypted chunks. The IPFS hash is returned to the enabler.

The IPFS hash can be used to retrieve the file from the IPFS.

6. The hash is sent by the Storage enabler in order to be registered in the Blockchain

infrastructure (and specifically the relevant Ethereum Smart Contract), and a transaction id

is generated. The transaction is merged into a new block. The transaction id can validate the

address of the sender (origin of the file) and its integrity. The file is deleted from the

smartphone of the user.

INNOSUP-2018-1

18

D2.2 Block.IS Enablers

Figure 7: Storage enabler interactions

The integrity and authenticity of the file can be verified at any time therough the IPFS hash, by the

user (who uploaded the file or other interested parties, e.g. the users of the application using the

Storage enabler), using the functionality of the Ethereum blockchain and the IPFS infrastructure.

3.3 Installation and Administration

The software and instructions for its installation / deployment and administration are available in

the following Gitlab group:

https://gitlab.com/block.is-enablers/storage-enabler

The package consists of the enabler and the smartphone App (application).

The group is administered by INTRASOFT International.

3.4 Open API

The technical documentation and the software of the Storage enabler are available in the following

Gitlab group:

https://gitlab.com/block.is-enablers/storage-enabler.

The group is administered by INTRASOFT International.

https://gitlab.com/block.is-enablers/storage-enabler
https://gitlab.com/block.is-enablers/storage-enabler

INNOSUP-2018-1

19

D2.2 Block.IS Enablers

4 Service Registry Enabler

This Section describes the Service Registry enabler.

4.1 Basic Concepts

The Service Registry enabler implements an entity, service and smart contract registry directory

where the entities participating in the Block.IS ecosystem can register (and advertise) themselves as

well as the services and smart contracts they offer based on keywords (tags).

This way finding services and smart contracts in Block.IS is facilitated and streamlined. The services

registered in the Service Registry enabler are not necessarily using Blockchains.

The Service Registry Enabler manages information and metadata related to:

1. Block.IS participating entities

2. Services and smart contracts offered by the participating entities and used in the Block.IS

ecosystem

For the registered services, the enabler includes the service endpoint URLs, while for the smart

contracts, the Decentralized Applications (DAPPs) addresses are included.

For compatibility purposes and to facilitate adoption and usage by potential users, the concepts and

approach of UDDI (Universal Description, Discovery and Integration) and similar approaches, such as

Apache ZooKeeper as a centralized service for maintaining configuration information and naming are

considered and adapted [5, 6].

4.2 Architecture and Interactions

In this Section we describe the high-level architecture and the main interactions involved in the

usage of the enabler.

4.2.1 High Level Architecture

The Service Registry enabler hosts published information on the entities participating in the Block.IS

ecosystem and the services or smart contracts (definitions as well as their deployed

implementations / available instances) they provide within the Block.IS ecosystem. In this view, the

Service Registry enabler can act as an internal Block.IS project entity, service and smart contract

registry.

We foresee two key roles i) the Service Provider, who is the provider of the web services (or DAPPs)

and ii) the Service Consumer, who is searching for services (or DAPPs) to consume. Both must be

registered in the Registry. In terms of the mode of registration (self-registration or registration by 3rd

party), the participating entities can register themselves and their services or smart contracts (self -

registration).

The entities, the services and the bindings can be registered in (and deleted from) the Service

Registry as well as searched for (through the Registry). For reasons of compatibility with similar (well

established solutions) and in order to increase potential adoption of the enabler, the interface and

the data model definitions are based upon that of UDDI.

INNOSUP-2018-1

20

D2.2 Block.IS Enablers

The main enhancement provided by the Service Registry enabler, in comparison with existing

registry solutions, is related to the Blockchain support, I.e. the registration in the (Ethereum-based)

Blockchain infrastructure of the full set of actions that are performed through the enabler in order to

support authenticity, integrity and immutabilty.

Figure 8: Service registry enabler high level architecture

As depicted in Figure 8, the Service Registry enabler interacts with (1-4) the Block.IS entities (service

and smart contract providers and consumers) in order to register themselves, the services and the

smart contracts they offer and (5, 6) with the entities interested in consuming services offered in the

Block.IS. These entities are then directed towards specific service and/or smart contract instances

and interact directly with them (7).

The enabler retrieves and registers the interactions with the Blockchain infrastructure, so that

integrity, immutability and authenticity are guaranteed (and verifiable using the transaction IDs

produced by the Blockchain by interested parties).

4.2.2 Interactions

In the following two types of interactions are described (a) the registration and deletion and (b) the

inquiry. The service (or Smart Contract) provided by the Service Provider is represented as a service

structure (as described in UDDI definitions) which includes information on the type and the usage of

the service. The binding templates model the actual implementation of an offered service (or Smart

Contract) and includes information on its access and usage.

Registration interface

According to Figure 9, the following methods are supported:

1. Register entity: The participating entity (Service Provider or Service Consumer) is registered

in the Service Registry. The entity structure contains contact information about the entity

and a list of services provided. Upon registration of the entity the enabler makes a related

registration in the Blockchain (and retrieves the transaction ID).

2. Register service: The participating registry can register a service. The service model includes

information on the service, categorical data and the list of the technical descriptions for the

web services provided (binding templates).

INNOSUP-2018-1

21

D2.2 Block.IS Enablers

3. Register bindings: The binding template includes the technical descriptions of the web

services provided. Each binding template describes an instance of a Web service offered at a

network address, typically given in the form of a URL.

Figure 9: Sequence diagram depicting usage of Service Registry enabler (registration)

As depicted in Figure 10, the provider can delete the registrations performed.

1. Delete bindings: This method allows the deletion from the Registry of one or multiple

(already registered) bindings

2. Delete service: This method allows the deletion from the Registry of an already registered

service

3. Delete entity: This method allows the deletion from the Registry of an already registered

entity.

INNOSUP-2018-1

22

D2.2 Block.IS Enablers

Figure 10: Sequence diagram depicting usage of Service Registry enabler (deletion)

Inquiry Interface

The inquiry interface is used when an entity is searching for services to consume, using the available

metadata. Upon finding candidate services, the application retrieves the formal description of their

bindings and then contacts and possibly consumes them (with the contact and consumption of the

services being outside the scope of the enabler).

The interface is presented in Figure 11, according to the following:

1. Find entity: The service consumer searches for entities, according to criteria. The enabler

(performing search in the Registry) returns a set of entities.

2. Get entity details: The service consumer asks for details of a specific entity; the details are

provided by the enabler.

3. Find service: The service consumer searches for services, according to criteria. The enabler

(performing search in the Registry) returns a set of services.

4. Get service details: The service consumer asks for details of a specific service; the details are

provided by the enabler.

5. Find binding: The service consumer searches for bindings, according to criteria. The enabler

(performing search in the Registry) returns a set of bindings.

6. Get binding details: The service consumer asks for details of a specific binding; the details

are provided by the enabler.

INNOSUP-2018-1

23

D2.2 Block.IS Enablers

Figure 11: Sequence diagram depicting usage of Service Registry enabler (inquiry)

The role of the Service registry enabler concludes with the provision of the registered information on

the entities, services, smart contracts and respective bindings. The service consumer is consequently

interacting with them (outside the context of the Service Registry enabler).

4.3 Installation and Administration

The software and instructions for its installation / deployment and administration are available in

the following Gitlab group:

https://gitlab.com/block.is-enablers/service-registry-enabler

The group is administered by INTRASOFT International.

4.4 Open API

The technical documentation and the software of the Storage enabler are available in the following

Gitlab group:

https://gitlab.com/block.is-enablers/service-registry-enabler

The group is administered by INTRASOFT International.

https://gitlab.com/block.is-enablers/service-registry-enabler
https://gitlab.com/block.is-enablers/service-registry-enabler

INNOSUP-2018-1

24

D2.2 Block.IS Enablers

5 Trusted Negotiations Enabler

5.1 Basic Concepts

The Trusted Negotiations enabler supports and enhances (in terms of integrity, authenticity and non-

repudiation guarantees) the critical (key) operations taking place during the interactions with a

Marketplace. With the concept of “critical operations” we refer to operations related to registration

of information (during the operation of and the interactions taking place in a Marketplace). These

operations include the making of an “offer”, a “bid”, as well as the establishment of bilateral

agreements between parties that are already registered in the Block.IS-enabled platform.

The Trusted Negotiations enabler offers:

1. Integrity: Ensuring that the offer, the bid and the agreement have the exact same content as

the original.

1. Authenticity: Proving who created or changed the offer, the bid or the agreement.

2. Tracing and tracking through timestamping

3. Non-repudiation: Not allowing a user to deny that he created or changed an offer, a bid and

an agreement (as long as each interaction is stored in the blockchain, using the enabler).

The Trusted Negotiations enabler provides the following:

1. Set of Distributed Applications (DAPPs) supporting the critical marketplace processes

(initialization of marketplace, creation of an offer, a bid and an agreement).

2. Set of DAPPs supporting the secure storage of the relevant agreement terms.

3. Activation of external services when a DAPP event (e.g. agreement breakage or revocation)

takes place.

Considering the rich set of configuration options for a Marketplace (e.g. related to the types of offers

and bids, the mechanisms supporting the decisions made and other), it has been decided not to

include a specific Marketplace in the enabler. The enabler offers the methods that allow for

collaboration with external marketplaces. In this view, the potential adopters of this specific enabler

may be expected to perform adaptations in order to smoothly use the enabler with the selected

marketplace. The Trusted Negotiations has pursued to leverage concepts and approaches of

currently used marketplaces (such as [7]) in order to facilitate adoption.

We assume that the participating entities are authenticated and authorized in the Blockchain

infrastructure (for example employing the ID manager with AAA support based on uPort enabler).

5.2 Architecture and Interactions

In this Section we describe the high-level architecture and the main interactions (using sequence

diagrams).

5.2.1 High Level Architecture

The Trusted Negotiations enabler enhances critical marketplace procedures and mechanisms with

the data integrity and authenticity based on Blockchain, referring to the marketplace-related

artefacts, including the offers, the bids, and the agreements (transactions) taking place through the

INNOSUP-2018-1

25

D2.2 Block.IS Enablers

marketplace mechanisms. It also offers tracking and tracing as the exchange through the Trusted

Negotiations are digitally signed and time-stamped, history tracing of the exchanged information

and of the transactions can take place. Data can be securely stored (using the Storage enabler) and

verified through the Blockchain mechanism. Furthermore, the enabler can create events when

specific market-place operations take place (to be offered to external interested applications and

stakeholders, e.g. through pub/sub infrastructures).

Figure 12: Trusted Negotiations enabler high level architecture

As depicted in Figure 12: Trusted Negotiations enabler high level architecture, the Trusted

Negotiations enablers collaborates with (a) the Marketplace manager who is responsible to initiate

and terminate the Marketplace, (b) the Offeror(s) and (c) the Bidder(s). In this view the enabler

interacts with these actors and with the Marketplace through the API it offers (and upon the triggers

offered by the actors). The enabler includes the DAPPs for secure storage of information being

responsible for registering the hash of this information with the Blockchain infrastructure. The

Blockchain infrastructure (as depicted in the figure) is based upon the Ethereum platform.

5.2.2 Interactions

The interactions performed by the enabler are presented in Figure 13.

1. Initiate marketplace: The Marketplace Manager initiates the Marketplace, including the

necessary parameters for its operation. The type of the marketplace, auctioning or booking

type is described as well as the mechanism for accepting bids. The initiation and the

parameters involved are stored in the Trusted Negotiations enabler and the secure hash is

registered (by the enabler) to the Blockchain infrastructure.

2. Create Offer: The offeror creates an offer (listing). The listing includes public (title,

description, geolocation, price, createdAt, duration, state) and private metadata. The

information on the Offer (listing) is securely stored by the enabler and the hash is registered

in the Blockchain.

3. Edit offer: The offeror edits an existing offer. During editing, the offeror can change the

value of the related metadata and/or cancel the offer. The edits performed upon the offer

are securely stored by the enabler and the hash is registered in the Blockchain.

4. Make bid: The Bidder makes a bid related to a specific offer. The Marketplace verifies that

the conditions are met. The bid is securely stored by the enabler DAPP and the hash is

registered in the Blockchain.

5. Close offer: Depending on the type of the Marketplace, the offer can be closed by the

Marketplace Manager. In the case of peer to peer marketplace it can be closed by the

offeror or automatically through specific conditions.

INNOSUP-2018-1

26

D2.2 Block.IS Enablers

Figure 13: Sequence diagram depicting the usage of Trusted Negotiation enabler

The set of operations supported by the Trusted Negotiations enabler can be configurable depending

on the characteristics and needs of the application. For example, in some cases all involved

interactions may need to be registered in the Blockchain infrastructure (focusing on the security

aspects), while in other cases the requirements may be more relaxed in terms of registering fewer

interactions in the Blockchain (e.g. opening and closing of offeres).

5.3 Installation and Administration

The software and instructions for its installation / deployment and administration are available in

the following Gitlab group:

https://gitlab.com/block.is-enablers/trusted-negotiations-enabler

The group is administered by INTRASOFT International.

https://gitlab.com/block.is-enablers/trusted-negotiations-enabler

INNOSUP-2018-1

27

D2.2 Block.IS Enablers

5.4 Open API

The technical documentation and the software of the Storage enabler are available in the following

Gitlab group:

https://gitlab.com/block.is-enablers/trusted-negotiations-enabler

The group is administered by INTRASOFT International.

https://gitlab.com/block.is-enablers/trusted-negotiations-enabler

INNOSUP-2018-1

28

D2.2 Block.IS Enablers

6 Identity and business process management based on SSIF

Enabler

6.1 Basic Concepts

An identity consists of different parts of information, i.e. attributes about a person or organization),

and these parts can be proven by other parties. Self-sovereign identity promises to empower

European citizens with new means to manage privacy, to eliminate logins, and to enjoy much faster

and safer electronic transactions via the internet as well as in real life. SSI promises to empower

European organisations to speed up, secure and automate transactions with customers, suppliers

and partners, resulting in tens of billions of euros savings annually on administrative costs in Europe.

SSI promises to drive a new business ecosystem with thousands of new jobs, new job categories and

new business opportunities for existing and new European companies [8].

SSI helps speed up business transactions. For example, verifiable credentials can be used to fill in

digital forms, thus reducing mistakes and saving time. The receiver of the form can learn what has

been filled in automatically via which credential, so he knows whether it is trustworthy and that no

mistakes were made while filling in the form. SSI can also be used to help organisations with the

GDPR privacy requirements. Since information about customers or clients can be retrieved from

verifiable credentials, an organisation does not have to save customer details herself. Also, the

selective-disclosure features of SSI enable the organisation to request only the information that they

strictly need for their business processes and business decisions.

The relevance of SSI in the context of the Block.IS project is that SSI allows answering the question

“which party has signed this (financial, logistic or agrifood) transaction” without revealing more

information about that party than strictly needed. For example, a fruit grower that needs to prove

that he is located in Spain can get proof from its municipality, revealing just the address of the

orchard and no personal information about the owner.

6.2 Architecture and Interactions

In this Section we describe the high-level architecture and the main interactions (using sequence

diagrams).

6.2.1 High Level Architecture

Self-sovereign identity offers, as depicted in Figure 14:

1. Pairwise trusted communication with any other citizen or organization;

2. Mutual verifiable credentials to speed up and reduce risk in transactions.

The first point is achieved with Distributed Identifiers (DID) and its associated resolution technology

to obtain public keys and service endpoints in a DID Document (DDO).

The second point works via verifiable credentials, a ‘proof’ can be created from a subset of one or

more credentials. These credentials are cryptographically signed by the issuer, privacy preserving

and machine verifiable.

INNOSUP-2018-1

29

D2.2 Block.IS Enablers

Figure 14: SSI - verifiable credentials and distributed identifiers

In order to describe the high-level architecture of SSI, we consider the involved stakeholders, namely

the holder, the issuer and the verifier (as depicted in Figure 15).

The holder can collect and control verifiable claims. They are issued by an issuer and can be

requested by the verifier. The holder of the claim can store them in for example an application on his

phone. The verifier can check on a public ledger whether the received claim has not been revoked

but that is not necessary.

Figure 15: SSI high-level architecture

While SSI-based ‘solutions’ are emerging worlwide, the majority has a local scope, i.e. they solve a

problem in a specific domain, they do not scale (at every level they need to, e.g. at the technical,

process, information and business levels), and scarcely interoperate. Addressing these issues is a top

priority for the eSSIF-Lab project, an EU H2020 project that TNO is working on.

6.2.2 Interactions

In a communication session, where party A has to prove something to party B, the following

interactions will occur.

1. The holder, party A, does a transaction request to a verifier, party B.

2. The verifier gives a list of statements and attestation specs to the holder, who then has to

collect all statements that were asked. The missing statements can be collected by a credential

issuer.

3. The holder then sends all statements to the verifier, who can check if any credentials are

revoked on a public ledger.

4. He constructs a valid argument and sends an ok/not ok message back to the holder.

The sequence of these interactions is depicted in Figure 16.

INNOSUP-2018-1

30

D2.2 Block.IS Enablers

Figure 16: Sequence diagram for transaction request

6.3 Installation and Administration

The software and instructions for its installation / deployment and administration are available in

the following Gitlab group:

https://gitlab.com/block.is-enablers/id-bp-management-ssif-enabler

The group is administered by TNO.

TNO has developed an SSI framework in Ampersand (the Ampersand programming language is

based on relation algebra), to build, for example digital forms. Credentials can be loaded in the MyID

app, and the proxy is also available1 (details included in the dedicated gitlab group). Sovrin is based

on Hyperledger Indy2 and Hyperledger Aries3 an open-source projects/toolkits to create, store and

share credentials. Tooling for the Sovrin blockchain is available in the Sovrin GitHub4.

6.4 Open API

The technical documentation and the software of the Storage enabler are available in the following

Gitlab group:

1 https://ci.tno.nl/gitlab/ampersand/ssif
2 https://www.hyperledger.org/projects/hyperledger-indy
3 https://www.hyperledger.org/projects/aries
4 https://github.com/sovrin-foundation

https://gitlab.com/block.is-enablers/id-bp-management-ssif-enabler

INNOSUP-2018-1

31

D2.2 Block.IS Enablers

https://gitlab.com/block.is-enablers/id-bp-management-ssif-enabler

The group is administered by TNO.

https://gitlab.com/block.is-enablers/trusted-negotiations-enabler
https://gitlab.com/block.is-enablers/id-bp-management-ssif-enabler

INNOSUP-2018-1

32

D2.2 Block.IS Enablers

7 Semantic Ledger Enabler

7.1 Basic Concepts

The Semantic Ledger enabler is a data-sharing platform that facilitates the implementation of a

transparent and immutable supply-chain ecosystem. Semantic Ledger is built as a software layer on

top of existing distributed ledger technology.

Within the Semantic Ledger ecosystem it is possible to specify visibility for the published data,

making it possible to publish confidential data on the ledger. Also, the platform supports

transactional confidentiality. This feature ensures it is not obvious which parties interact through the

platform.

7.2 Architecture and Interactions

In this Section we describe the high-level architecture and the main interactions (using sequence

diagrams).

7.2.1 High level Architecture

Semantic Ledger utilizes semantic technology to achieve data interoperability within the ecosystem.

By semantically structuring the data, it is possible to refer to any other data within or outside the

system, given this data is also semantically annotated and referenceable. The use of semantics

within the platform enables users of the platform to specify or use ontologies to describe their data,

which enables them to model and specify business rules with the published data. By utilizing

semantic rules and ontologies, published by trusted parties, the data becomes inherently more

valuable. Anyone with access to the data can verify compliance to the specified rules. By using

semantics this way, the Semantic Ledger offers similar functionality to smart-contracts, but with

more flexibility and better scalability.

The semantic ledger technology is, in principle, a ledger agnostic technology. Meaning any ledger

that conforms to the requirements specified by the ledger should be able to support the semantic

ledger technology.

In the current implementation, the semantic ledger is implemented on the BigchainDB ledger [10].

• The Semantic Ledger technology exists as an API and a semantic-data validator.

• The semantic ledger API is built using django-rest-framework.

• The SHACL (Shapes Constraint Language) Validator is built in Typescript and NodeJS.

• The domain-specific API can be built using any technology that supports REST-API calls.

7.2.2 Interactions

The semantic ledger technology provides an API, to enable other applications to connect to the

ledger. The Semantic Ledger includes a semantic validator API, which validates publications against

provided rules (which are stored on the ledger), as depicted in Figure 17. The interactions include

the following:

1. A user wants to publish data, the user enters data into a GUI or composes an API call.

INNOSUP-2018-1

33

D2.2 Block.IS Enablers

2. The domain application translates this input-data into semantic data, and attaches a rule-

reference to the publication (specified as an application-wide setting). This is published as

API call towards the Semantic Ledger API

3. The semantic ledger validates the publication against the provided rules. If rules are broken,

a validation-report is returned to the domain-application, which then forwards this to the

user as a publication-error.

4. If validation succeeds, the publication is published to the ledger API. The ledger creates a

new asset on the ledger, and returns an asset-id, which is returned to the domain-

application, which in turn confirms this to the user

Figure 17: Interactions from the semantic ledger enabler

Invalid data can be present on the ledger (by directly publishing data to the underlying ledger). So,

whenever data is read through the Semantic Ledger layer, data is validated (Figure 18). The

interactions include the following:

1. A user request data using a GUI, or by calling a domain-api endpoint.

2. The domain-api calls the “request asset” endpoint from the semantic-ledger API

3. The semantic-ledger application request the specified asset from the ledger

4. The returned asset is read, and when rules are specified, the rules are also requested from

the ledger.

5. The requested data is validated against the rules that are received from the ledger and

returned to the domain-application, which returns the data to the user (in GUI or as API-

response). If the data is not validated, the semantic-ledger API also returns a validation

report.

INNOSUP-2018-1

34

D2.2 Block.IS Enablers

Figure 18: Sequence diagram for semantic ledger (validation)

The rules are provided to the Semantic Ledger using by the following process (Figure 19):

1. The rules are published directly to the Semantic Ledger API, formatted as SHACL constraints.

2. The semantic ledger validates the rules and, when valid, publishes these to the ledger. The

ledger returns an asset-id, representing the rules.

3. The user specifies the asset-id of the rules to the domain-API. These rules are now attached

to the domain-publications.

INNOSUP-2018-1

35

D2.2 Block.IS Enablers

Figure 19: Sequence diagram for the semantic ledger enabler (provision of rules)

7.3 Installation and Administration

The software and instructions for its installation / deployment and administration are available in

the following Gitlab group:

https://gitlab.com/block.is-enablers/semantic-ledger-enabler

The group is administered by TNO.

7.4 Open API

The technical documentation and the software of the Storage enabler are available in the following

Gitlab group:

https://gitlab.com/block.is-enablers/semantic-ledger-enabler

The group is administered by TNO.

https://gitlab.com/block.is-enablers/semantic-ledger-enabler
https://gitlab.com/block.is-enablers/trusted-negotiations-enabler
https://gitlab.com/block.is-enablers/id-bp-management-ssif-enabler

INNOSUP-2018-1

36

D2.2 Block.IS Enablers

8 Discussion and Future Steps

Deliverable D2.2 describes the Blockchain-based enablers offered by the Block.IS consortium

members (and specifically INTRASOFT International and TNO). As discussed, in the context of the

work of T2.2, 6 enablers have been selected and specified. The functionality indicated in the

Description of Action has been covered (offering an increased number of enablers from those

initially expected).

For each of the enablers, a dedicated section has been prepared elaborating the basic concepts, the

high level architecture and the interactions (using sequence diagrams). Links to gitlab groups have

been provided that accommodate the API and further instructions related to deployment,

configuration and collaboration with the Blockchain infrastructure.

The enablers described in the current deliverable are being offered in the open calls of the project.

Starting with the 1st open call we expect to gather the experiences and the lessons learnt from the

potential adopters in order to further enhance and improve the enablers. A report on the lessons

learnt and the continuous improvements in the deliverables are expected to be documented in

dedicated section in the forthcoming WP2 deliverables namely D2.3 (Block.IS technical and business

support service design – v2) and D2.4 Block.IS (technical and business support service design –

lessons learnt).

We also expect that the gitlab groups and repositories, in alignment with the technological and

business support services provided by the project, will continuously evolve and allow for fruitful

collaboration between the Block.IS partners and the interested SMEs and start-ups.

INNOSUP-2018-1

37

D2.2 Block.IS Enablers

References

1. Block.IS Project “Description of Action” (DoA)

2. uPort, Identity system for decentralised web, Technical Documentation:
https://github.com/uport-project/uport-identity/blob/develop/docs/reference/ (accessed
September 2019)

3. Ethereum open source, public, blockchain-based distributed computing platform and
operating system featuring smart contract functionality, www.ethereum.org (accessed
September 2019)

4. IPFS, InterPlanetary File System, peer-topeer hypermedia protocol, https://ipfs.io (accessed
September 2019)

5. OASIS. UDDI Version 3.0.2. UDDI Spec Technical Committee Draft:
http://www.uddi.org/pubs/uddi-v3.0.2-20041019.htm (2004)

6. Apache Zookeeper. https://zookeeper.apache.org/ (accessed September 2019)

7. Google Marketplace API. Retrieved from https://developers.google.com/authorized-
buyers/apis/guides/v2/marketplace-api (accessed September 2019)

8. Deventer, D. I., Self-Sovereign Identity – The Good, the Bad and the Ugly, Retrieved from
https://blockchain.tno.nl/blog/self-sovereign-identity-the-good-the-bad-and-the-ugly/

9. Django REST Framework. (2019). Technical documentaion https://www.django-rest-
framework.org/ (accessed September 2019)

10. BigChainDB. Technical documentation https://www.bigchaindb.com/ (accessed Septembe
2019)

https://github.com/uport-project/uport-identity/blob/develop/docs/reference/
http://www.ethereum.org/
https://ipfs.io/
http://www.uddi.org/pubs/uddi-v3.0.2-20041019.htm
https://zookeeper.apache.org/
https://developers.google.com/authorized-buyers/apis/guides/v2/marketplace-api
https://developers.google.com/authorized-buyers/apis/guides/v2/marketplace-api
https://blockchain.tno.nl/blog/self-sovereign-identity-the-good-the-bad-and-the-ugly/
https://www.django-rest-framework.org/
https://www.django-rest-framework.org/
https://www.bigchaindb.com/

